Ordering in a system with finite entropy at $\mathrm{T}=0$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1977 J. Phys. A: Math. Gen. 101745
(http://iopscience.iop.org/0305-4470/10/10/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 13:45

Please note that terms and conditions apply.

Ordering in a system with finite entropy at $\boldsymbol{T}=\mathbf{0}$

P Reed
Theoretical Physics Department, University of Manchester, Manchester M13 9PL, UK

Received 26 May 1977

Abstract

A rigorous Peierls-type proof is given for the existence of a phase transition for an antiferromagnetic Ising model on a $\mathrm{CU}_{3} \mathrm{Au}$ lattice with the spins at the gold sites removed. This lattice is known to possess finite entropy at $T=0$. Thus in contrast to say the planar triangular antiferromagnetic Ising model, which has entropy at $T=0$ but no phase transition, here is an Ising model which has both.

1. Introduction

Recently Chui (1977) examined an antiferromagnetic Ising model on a $\mathrm{Cu}_{3} \mathrm{Au}$ lattice with non-magnetic impurities at the Au sites. He showed that at zero temperature the system possessed a finite entropy per spin, and suggested that an ordered phase may still exist despite this finite entropy at $T=0$.

Here a Peierls-type argument (Peierls 1936, Griffiths 1964) is used to show rigorously that an ordered phase does indeed exist. Part of the lattice which is to be considered is shown in figure 1. The positions of the spins are shown by crosses and full circles. At the centre of each alternate octet of spins denoted by a cross is another spin denoted by a full circle. Interactions between nearest neighbours are depicted in figure

Figure 1. Part of $\mathrm{Cu}_{3} \mathrm{Au}$ lattice shown: (a) from the side; and (b) from above. Spins are depicted by crosses and full circles, and bonds by full and broken lines.

1 by full and broken lines, and the coupling between all spins is taken to be less than zero. It is convenient to divide the spins of the lattice into two sets, denoted by X_{1} and X_{2} and defined as follows:
(i) The set of spins at the base of the pyramids of the lattice and depicted as crosses in figure 1 belong to set X_{1}.
(ii) The spins at the tips of the pyramids and depicted by full circles belong to set X_{2}.

Denote by $\sigma_{x_{1}}= \pm 1$ and $\sigma_{x_{2}}= \pm 1$ the spins of X_{1} and X_{2} respectively. Now each spin interacts with its nearest neighbours only and the energy E of the lattice is

$$
\begin{equation*}
E=-J_{1} \sum_{\left\langle x_{1} x_{1}\right\rangle} \sigma_{x_{1}} \sigma_{x_{1}}-J_{2} \sum_{\left\langle x_{1} x_{2}\right\rangle} \sigma_{x_{1}} \sigma_{x_{2}} \tag{1}
\end{equation*}
$$

and

$$
J_{1}, J_{2}<0
$$

$\left\langle x_{1} x_{1}^{\prime}\right\rangle$ denote summation over nearest neighbours. The distribution function for any arrangement of the spins is

$$
\exp (-\beta E), \quad \beta=1 / k T
$$

Note that spins in different layers and belonging to X_{1} interact only through the spins of X_{2}. Peierls' (1936) original argument for the existence of a phase transition in the two-dimensional Ising ferromagnet is a powerful geometric argument which in essence bounds the probability of fluctuations from the ground state and from this it is possible to infer the existence of a phase transition. Here, because of the peculiar geometry of the lattice, these bounds cannot be expressed in terms of the length (surface area) of the boundary between regions of opposite order as in the original Peierls' proof. In addition, the ordering can be quite subtle in that it may only be the spins of X_{1} which become ordered while the spins of X_{2} remain disordered. It is the disorder of X_{2} which gives rise to the finite entropy at zero temperature as shown by Chui (1977) and as will arise as a natural consequence of the proof of a phase transition. The nature of the ordering will depend on the ratio J_{1} / J_{2} and can be either antiferromagnetic or ferromagnetic even though $J_{1}, J_{2}<0$. In fact this lattice can be regarded as having competing order parameters; but discussion of this will be delayed until after the proof has been given. Finally it is noted that there are two-dimensional antiferromagnets which have finite entropy per spin at $T=0$. The triangular lattice has finite entropy per spin at $T=0$ but no phase transition (Wannier 1950), while the 'union jack' lattice with a spin at the site of the crossed bands does have a phase transition and can have entropy at $T=0$ (Vaks et al 1965).

Somewhat anticipating the results the calculation is divided into two cases $J_{1} \leqslant J_{2}<$ 0 and $0>J_{1}>J_{2}$.

2. Calculation: $\boldsymbol{J}_{\mathbf{1}} \leqslant \boldsymbol{J}_{\mathbf{2}}$

For the moment consider X_{1} only and impose the following boundary conditions on the sub-lattice which they make up. Let the boundary columns of this sublattice be alternately fixed with positive or negative spins. Let the first and last layers of this sublattice have their spins fixed such that each negative spin is surrounded by positive spins and vice versa. Thus these first and last layers have the perfect antiferromagnetic order. Now sublattice X_{1} is partitioned by drawing unit areas on the dual of sublattice X_{1} using the following rules:
(i) If two neighbouring spins in the same layer of sublattice X_{1} are parallel then draw a unit area perpendicular to the line joining them and midway between them.
(ii) If two spins in neighbouring layers of X_{1} are antiparallel then draw a unit area midway between them and perpendicular to the line joining them.
In this way sublattice X_{1} is partitioned by a set of closed surfaces. Denote the set of such surfaces by B. So far nothing has been said about sublattice X_{2} and the above can be carried out without reference to it.

It is well known that, say for a rectangular or cubic lattice, B uniquely identifies the energy of the lattice. This is not the case for the present lattice as the spins of X_{2} can take any value without altering B. A lattice with no surfaces will have perfect antiferromagnetic ordering in each layer of X_{1} and ferromagnetic ordering in each column. In the Peierls' proof only the area of B is relevant; however, here the number of corners, edges and interactions will be important.

It is important to state clearly what is to be meant by the phrase 'the interaction across B^{\prime}. By this is meant interaction between all pairs of spins of X_{1}, one inside B and one outside B, either joined directly by a bond of sublattice X_{1} or indirectly via a single spin of X_{2}. The programme is now to bound the probability of configuration B and from this to infer the existence of a phase transition.

Define:
(a) n to be the total surface area of B.
(b) n_{h} and n_{v} to be the horizontal and vertical components of n.
(c) n_{1} to be the number of sites of X_{2} where there is an intersection between two vertical planes of B (figure $2(a)$).
(d) n_{2} to be the number of sites of X_{2} where there is a corner of B (figure $2(b)$).
(e) n_{3} to be the number of sites of X_{2} where there is a vertical edge of B (figure 2(c)).
(f) $\quad n_{4}$ to be the number of sites of X_{2} where there is a horizontal edge of B intersected by a plane (figure $2(d)$).

Knowing the above is all that is required to fix the maximum energy of interaction across B. To see this, note that for a corner edge etc not at a site of X_{2}, no additional interactions across B are incurred other than those included in (b). Further, there is no effective interaction across n_{h}. This is because the layers of X_{1} are connected only through spins of X_{2} and the sum of any eight of X_{1} separated by horizontal sections of B is zero. Thus there is no net contribution to the energy of the lattice coming from n_{h}, except possibly from the edges of these horizontal sections and such energy contributions have already been accounted for in n_{2} and n_{4}.

Define N_{2} to be the set of unit surfaces of B which meet at the n_{2} sites of X_{2} where there is a corner of B. Similarly define N_{1}, N_{3} and N_{4} for the other types of intersections defined in $(c),(e)$ and (f). Let $E(B)$ be the energy of the lattice which is partitioned by B. Then

$$
\begin{equation*}
E(B) \leqslant-\left[n_{v} J_{1}-J_{2}\left(8 n_{1}+2 n_{2}+4 n_{3}+4 n_{4}\right)\right]+E^{c}(B) \tag{2}
\end{equation*}
$$

or more generally,

$$
\begin{equation*}
E(B)=-\left[n_{\mathrm{v}} J_{1}-J_{2}\left(8 \sum_{x_{2} \in n_{1}} \sigma_{x_{2}}+2 \sum_{x_{2} \in n_{2}} \sigma_{x_{2}}+4 \sum_{x_{2} \in n_{3}} \sigma_{x_{2}}+4 \sum_{x_{2} \in n_{4}} \sigma_{x_{2}}\right)\right]+E^{c}(B) . \tag{3}
\end{equation*}
$$

Figure 2. Types of intersections at sites of X_{2}.
$E^{c}(B)$ is the contribution to the energy coming from all interactions not across B. Hence if $P(B)$ is the probability of configuration B then from (3)

$$
\begin{equation*}
P(B)=\mathrm{e}^{n_{4} J_{1} \beta} \sum_{\left(X_{2}\right)}^{\prime} \mathrm{e}^{-\beta E^{c}(B)} \frac{\left(2 \cosh 8 J_{2} \beta\right)^{n_{1}}\left(2 \cosh 2 J_{2} \beta\right)^{n_{2}}\left(2 \cosh 4 J_{2} \beta\right)^{n_{3}}\left(2 \cosh 4 J_{2} \beta\right)^{n_{4}}}{Z 2^{n_{1}+n_{2}+n_{3}+n_{4}-d}} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
Z=\sum_{\left(X_{1}\right)\left(X_{2}\right)} \mathrm{e}^{-\beta E} \tag{5}
\end{equation*}
$$

d is the number of spins of X_{2} which lie on $B . Z$ is the partition function and the summation is over all $\sigma_{x_{1}}$ and $\sigma_{x_{2}}$ subject to the boundary conditions. $\Sigma_{\left(X_{2}\right)}^{\prime}$ denotes summation over all spins of X_{2} which do not lie on B. A lower bound is constructed for Z by restricting the summation over $\left(X_{1}\right)$ and $\left(X_{2}\right)$ to states in which there are no surfaces at all. Denote the set of such states by G. Then

$$
\begin{equation*}
Z \geqslant \sum_{G} \mathrm{e}^{-\beta E}=2^{d} \mathrm{e}^{-n_{0} \beta J_{1}} \sum_{\left(\mathbf{X}_{2}\right)}^{\prime} \mathrm{e}^{-\beta E c(\boldsymbol{B})} . \tag{6}
\end{equation*}
$$

From (4) and (6) it follows that

$$
\begin{equation*}
P(B) \leqslant \mathrm{e}^{2 n_{v} \beta J_{1}} \frac{\left(2 \cosh 8 J_{2} \beta\right)^{n_{1}}\left(2 \cosh 2 J_{2} \beta\right)^{n_{2}}\left(2 \cosh 4 J_{2} \beta\right)^{n_{3}}\left(2 \cosh 4 J_{2} \beta\right)^{n_{4}}}{2^{n_{1}+n_{2}+n_{3}+n_{4}}} \tag{7}
\end{equation*}
$$

The problem is now to bound (7). The first step is to choose T_{1} such that for $T<T_{1}$

$$
\begin{equation*}
\mathrm{e}^{\beta J_{2}}<\eta<1 . \tag{8}
\end{equation*}
$$

η is arbitrary but small. Typically η could be chosen to be 10^{-6}; for the moment it does not matter; a suitable choice will be made later. Then

$$
\begin{equation*}
P(B) \leqslant \exp \left\{\beta\left[2 n_{\mathrm{V}} J_{1}-2 J_{2}\left(4 n_{1}+n_{2}+2 n_{3}+2 n_{4}\right)\right]\right\}\left(\frac{1+\eta}{2}\right)^{n_{1}+n_{2}+n_{3}+n_{4}} \tag{9}
\end{equation*}
$$

A bound is put on (9) by expressing n_{v} in terms of n_{1}, n_{2}, n_{3} and n_{4}. The type of bound that will be constructed and that will be sufficient for later use will depend on whether $J_{1}<J_{2}$ or $J_{1}=J_{2}$. Note that each unit area of B can at most belong to two of the sets N_{1}, N_{2}, N_{3} and N_{4} (or the same set twice). This is because of the strange geometry of the lattice. To convince oneself of the truth of the above statement just imagine a unit area which forms part of a corner, then this unit area can at most form part of two corners which are at a site of X_{2}. Thus a lower bound for n_{v} is half the total number of vertical unit areas needed to construct n_{1} intersections, n_{2} corners etc. Thus

$$
\begin{equation*}
n_{v} \geqslant \frac{1}{2}\left(8 n_{1}+2 n_{2}+4 n_{3}+6 n_{4}\right), \tag{10}
\end{equation*}
$$

and from (9) and (10) it follows that

$$
\begin{equation*}
P(B) \leqslant \exp \left[2 \beta n_{\mathrm{v}}\left(J_{1}-J_{2}\right)\right]\left(\frac{1+\eta}{2}\right)^{n_{1}+n_{2}+n_{3}+n_{4}} \tag{11}
\end{equation*}
$$

This bound is sufficient for $J_{1} \neq J_{2}$. For $J_{1}=J_{2}$ write

$$
\begin{equation*}
4 n_{1}+n_{2}+2 n_{3}+2 n_{4}=n_{v}-b, \quad b \geqslant 0 . \tag{12}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
n_{1}+n_{2}+n_{3}+n_{4} \geqslant \frac{1}{4} n_{v}-\frac{1}{4} b . \tag{13}
\end{equation*}
$$

Thus from (9),

$$
\begin{equation*}
P(B) \leqslant \exp \left(2 J_{1} \beta b\right)\left(\frac{1+\eta}{2}\right)^{n_{1}+n_{2}+n_{3}+n_{4}} \tag{14}
\end{equation*}
$$

It is now possible to show that for sufficiently low temperatures an ordered state can exist. To do this the correct order parameter must be chosen and bounded strictly greater than zero. Now

$$
x_{1}=(i, j, k) \quad i, j, k=1,2, \ldots
$$

and define

$$
\begin{equation*}
m_{1}=\frac{1}{V} \sum_{\left(X_{1}\right)} \sigma_{x_{1}}(-1)^{i+j} \tag{15}
\end{equation*}
$$

with V the number of spins of X_{1}. Then

$$
\begin{equation*}
\lim _{V \rightarrow \infty}\left\langle m_{1}\right\rangle \geqslant \lim _{V \rightarrow \infty}\left(1-\frac{2}{V} \sum_{B} V(B) D(B) P(B)\right) . \tag{16}
\end{equation*}
$$

$V(B)$ is the number of spins inside B and $D(B)$ can be defined as follows: split B into a maximal set of connected components B_{1}, B_{2}, \ldots, B which shall be called cycles \dagger.

[^0]Then $D(B)$ is the number of cycles with the prescribed number of crossings and corners etc as defined earlier. A bound on $D(B)$ can be constructed in much the same way as Griffiths (1964) and Ruelle (1969) with a few modifications. If there were no knowledge about the number of corners, crossings etc then a bound could be constructed as in Ruelle (1969) to give

$$
V 3^{n_{v}-1}
$$

The $3^{n_{v}-1}$ comes from the requirement that each unit area can be added in one of three ways. However, knowing that there are n_{1} crossings etc reduces the degree of freedom of those unit areas involved in constructing these intersections etc to one. Hence from (10) the following is found:

$$
\begin{equation*}
D(B) \leqslant V 3^{n_{v}-\left(4 n_{1}+n_{2}+2 n_{3}+3 n_{4}\right)} . \tag{17}
\end{equation*}
$$

For $J_{1}<J_{2}$

$$
\begin{equation*}
\lim _{V \rightarrow \infty}\left\langle m_{1}\right\rangle \geqslant 1-\sum_{B} V(B) 3^{n_{v}-\left(4 n_{1}+n_{2}+2 n_{3}+3 n_{4}\right)}\left(\frac{1+\eta}{2}\right)^{n_{1}+n_{2}+n_{3}+n_{4}} \exp \left[2 \beta n_{v}\left(J_{1}-J_{2}\right)\right] \tag{18}
\end{equation*}
$$

A sufficient bound for $V(B)$ for the present is

$$
\begin{equation*}
V(B) \leqslant\left(n_{\mathrm{v}} / 4\right)^{3 / 2} \tag{19}
\end{equation*}
$$

Then the second term of (18) is less than or equal to

$$
\sum_{n_{v}=4}^{\infty} 2\left(\frac{n_{v}}{4}\right)^{3 / 2}\left(\frac{1+\eta}{2}\right)^{n_{v}} 3^{n_{v}} \mathrm{e}^{2 \beta n_{v}\left(J_{1}-J_{2}\right)}=\alpha_{1}(T) .
$$

In particular the above series is convergent and can be bounded as small as is pleased. Then choose $\alpha_{1}(T)<1$ for $T<T_{c_{1}}$. Then

$$
\begin{equation*}
\lim _{V \rightarrow \infty}\left\langle m_{1}\right\rangle>1-\alpha_{1}(T)>0 \quad \text { for } T<T_{\mathrm{c}_{1}} . \tag{20}
\end{equation*}
$$

Hence there is an ordered phase for $T<T_{c_{1}}$ and $J_{1}<J_{2}$. There is also a phase transition for $J_{1}=J_{2}$ but the proof is a little more involved. Using (14), (16) and (17), then for $J_{1}=J_{2}$
$\lim _{V \rightarrow \infty}\left\langle m_{1}\right\rangle \geqslant 1-\left[2 \sum_{B} V(B) 3^{n_{v}-\left(4 n_{1}+n_{2}+2 n_{3}+3 n_{4}\right)}\left(\frac{1+\eta}{2}\right)^{n_{1}+n_{2}+n_{3}+n_{4}} \mathrm{e}^{2 J_{1} \beta b}\right]$.
The summation in (21) is divided into two parts: a summation for which $b \neq 0$ and a summation for which $b=0$. The second term of (21) becomes

$$
\begin{align*}
& 2 \sum_{\substack{B \\
b \neq 0}} V(B) 3^{n_{\mathrm{v}}-\left(4 n_{1}+n_{2}+2 n_{3}+3 n_{4}\right)}\left(\frac{1+\eta}{2}\right)^{n_{1}+n_{2}+n_{3}+n_{4}} \mathrm{e}^{2 J_{1} \beta b} \\
& \quad+2 \sum_{b=0}^{B} V(B)\left(\frac{1+\eta}{2}\right)^{n_{1}+n_{2}+n_{3}+n_{4}} 3^{n_{\mathrm{v}}-\left(4 n_{1}+n_{2}+n_{3}+3 n_{4}\right)} \tag{22}
\end{align*}
$$

The first of these terms can be easily disposed of. Use (13) and (12) to write the first term of (22) as less than or equal to

$$
\begin{equation*}
2 \sum_{\substack{B \\ b \neq 0}} V(B)\left(\frac{1+\eta}{2}\right)^{n_{\mathrm{v}} / 4}\left[3\left(\frac{1+\eta}{2}\right)^{-1 / 4} \mathrm{e}^{2 \beta J_{1}}\right]^{b} . \tag{23}
\end{equation*}
$$

(19) is again a sufficient bound for $V(B)$. Hence (23) becomes less than or equal to

$$
\begin{equation*}
3\left(\frac{1+\eta}{2}\right)^{-1 / 4} \mathrm{e}^{2 \beta J_{1}} \sum_{n_{v}=4}^{\infty}\left(\frac{n_{v}}{4}\right)^{3 / 2}\left(\frac{1+\eta}{2}\right)^{n_{v} / 4} \tag{24}
\end{equation*}
$$

where T is chosen sufficiently small to make $3[(1+\eta) / 2]^{-1 / 4} \mathrm{e}^{2 \beta J_{1}}<1$. Now the series in (24) is convergent by the ratio test remembering that $\eta<1$. Hence by choosing T small, (24) can be bounded as small as is pleased. Define (24) to be

$$
\begin{equation*}
\alpha_{2}(T) \underset{T \rightarrow 0}{\rightarrow} 0 . \tag{25}
\end{equation*}
$$

The second term of (22) is slightly harder to bound as there are no exponentially small factors to control the growth of the series. In fact, it is obviously not possible to bound this series to zero as $T \rightarrow 0$ as in the previous two series. It is necessary to carefully take into account the consequences of $b=0$ which are as follows:

$$
\begin{array}{lll}
b=0 & \Rightarrow & n_{4}=0, \\
b=0 & \Rightarrow & n_{v}=4 n_{1}+n_{2}+2 n_{3}, \\
b=0 & \Rightarrow & V(B)=n_{v} / 4 . \tag{26c}
\end{array}
$$

Using (26) in the second term of (22) yields

$$
\begin{equation*}
2 \sum_{B}\left(\frac{1+\eta}{2}\right)^{n_{1}+n_{2}+n_{3}}\left(n_{1}+\frac{n_{2}}{4}+\frac{n_{3}}{2}\right) . \tag{27}
\end{equation*}
$$

Before summing (27) it must be noted that $n_{1} \neq 0 \Rightarrow n_{2} \geqslant 4$ and $n_{3} \geqslant 2$, and $n_{3} \neq 0 \Rightarrow n_{1} \geqslant$ 4. So (27) is bounded above by

$$
\begin{equation*}
2\left[\left(\frac{1+\eta}{2}\right)^{6} \sum_{n_{1} \geqslant 1}^{\infty}\left(\frac{1+\eta}{2}\right)^{n_{1}} n_{1}+\frac{1}{4} \sum_{n_{2} \geqslant 4}^{\infty}\left(\frac{1+\eta}{2}\right)^{n_{2}} n_{2}+\frac{1}{2}\left(\frac{1+\eta}{2}\right)^{4} \sum_{n_{3} \geqslant 2}^{\infty}\left(\frac{1+\eta}{2}\right)^{n_{3}} n_{3}\right] . \tag{28}
\end{equation*}
$$

η can be chosen as small as is pleased by choosing T_{1} small enough, as can be seen from equation (8). Let

$$
\eta=10^{-3} \quad T<T_{1}
$$

Hence (28) sums to

$$
\begin{equation*}
\frac{1}{2}+\mathrm{O}\left(10^{-3}\right) \tag{29}
\end{equation*}
$$

From (21), (22), (25) and (29) it follows that for $J_{1}=J_{2}$

$$
\begin{equation*}
\lim _{V \rightarrow \infty}\left\langle m_{1}\right\rangle \geqslant 1-\alpha_{2}(T)-\frac{1}{2}-\mathrm{O}\left(10^{-3}\right) \geqslant \frac{1}{2}-\alpha_{2}(T)-\mathrm{O}\left(10^{-3}\right) . \tag{30}
\end{equation*}
$$

For $T<T_{\mathrm{c}_{2}}, \alpha_{2}(T)<\frac{1}{4}$. (30) also holds when $J_{1}<J_{2}$. However, the bound already constructed for this case and given by (20) shows that the system saturates at $T=0$. From (30) it follows that for $T<\min \left(T_{1}, T_{\mathrm{c}_{2}}\right)$

$$
\lim _{V \rightarrow \infty}\left\langle m_{1}\right\rangle>0 .
$$

Equations (20) and (30) yield the required result that for all $J_{1} \leqslant J_{2}$

$$
\begin{equation*}
\lim _{V \rightarrow \infty}\left\langle m_{1}\right\rangle>0 \quad \text { for } T<\min \left(T_{1}, T_{c_{1}}, T_{c_{2}}\right)>0 \tag{31}
\end{equation*}
$$

An ordered state has been proved to exist and hence from general thermodynamic considerations the system has been shown to undergo a phase transition. The order parameter has been identified and is given by (15). This order parameter describes the ordering of the spins of sublattice X_{1}. The ordered phase has antiferromagnetic ordering in the planes of X_{1} and ferromagnetic ordering in the columns. For $J_{1}<J_{2}$ and $T=0$ the order parameter saturates, as can be seen from (20). In this state the spins of X_{2} are essentially free giving an entropy per spin at $T=0$ of

$$
\begin{equation*}
\lim _{V \rightarrow \infty} \frac{2}{3 V} \ln \left(2^{V / 2}\right)=\frac{1}{3} \ln 2 . \tag{32}
\end{equation*}
$$

For $J_{1}=J_{2}$ the system will have this characteristic ordering given by order parameter of equation (15). However, the entropy per spin can be shown to be strictly greater than (32). Hence for $J_{1}=J_{2}$ the order parameter does not saturate at $T=0$. For $J_{1}<J_{2}$ and at $T=0$, and only then, the correlation between the neighbouring layers of X_{1} breaks down.

3. Calculation: $\boldsymbol{J}_{\mathbf{2}}<\boldsymbol{J}_{\mathbf{1}}<\mathbf{0}$

None of the bounds constructed in $\S 2$ hold for $J_{2}<J_{1}<0$. It will now be shown that for sufficiently small temperatures a different type of ordering occurs. In this case all boundary spins of X_{1} are made positive and the lattice is partitioned by drawing unit areas on the dual of X_{1} between any neighbouring spins of X_{1} which are antiparallel. This partitions the lattice by closed surfaces; call the set of such surfaces C. These surfaces intersect themselves and again the energy of a given configuration C will depend on the number and type of intersections, though not in the same way as before. Define:
(a) n to be the total area of C.
(b) n_{v} and n_{h} to be the vertical and horizontal component of n.
(c) l_{1} to be the number of sites of X_{2} where there is an edge of C (figure 2(c)).
(d) l_{2} to be the number of sites of X_{2} where there is a corner of C (figure 2(b)).
(e) l_{3} to be the number of sites of X_{2} where there are two corners of C (figure 2(e)).
(f) l_{4} to be the number of sites of X_{2} where there is an intersection of two planes of C (figure 2(a)).
(g) l_{5} to be the number of sites of X_{2} where three planes of C intersect (figure 2(f)).
(h) l_{6} to be the number of sites of X_{2} where there is an intersection of an edge and a plane of C (figure 2(d)).

Denote by L_{1} the set of unit areas which meet at the l_{1} sites of X_{2} where there is an edge of C : Define $L_{2}, L_{3}, L_{4}, L_{5}$ and L_{6} similarly. Note that even though the same diagrams have been used to illustrate $(c),(d),(f)$ and (h) of the above there are slight differences in some of these definitions from those that were used before. For example in (f) it is no longer required that the planes should be vertical. Denote by $E(C)$ the energy of the lattice which is partitioned by C :

$$
\begin{equation*}
E(C) \leqslant n_{v} J_{1}+J_{2}\left(4 l_{1}+6 l_{2}+4 l_{3}\right)+E^{c}(C) \tag{33}
\end{equation*}
$$

$E^{c}(C)$ comes from all interactions not across C. Then the probability of C is thus

$$
\begin{equation*}
P(C) \leqslant 2^{n} \frac{\exp \left\{-\beta\left[n_{w} J_{1}+J_{2}\left(4 l_{1}+6 l_{2}+4 l_{3}\right)\right]\right\}}{Z} \sum_{\left(X_{2}\right)}^{\prime} \mathrm{e}^{-\beta E c(C)} \tag{34}
\end{equation*}
$$

Z is the partition function which is the sum over all $\sigma_{x_{1}}, \sigma_{x_{2}}$ subject to the boundary conditions. This summation is restricted to states such that there are no surfaces present. This is equivalent to just taking configuration C and reversing all spins inside it. Also restrict all spins of X_{2} which formerly lay on the surface C to be fixed negative. Denote this state by G and the energy of any state of G by $E^{*}(C)$. Then

$$
Z>\sum_{\left(\tilde{X}_{2}\right)}^{\prime} \mathrm{e}^{-\beta E^{*}(C)}
$$

and

$$
\begin{align*}
& E^{*}(C)=-\left[n_{\vee} J_{1}-8 J_{2}\left(l_{1}+l_{2}+l_{3}+l_{4}+l_{5}+l_{6}\right)\right. \\
&\left.\quad-J_{2}\left(4 n-8 l_{1}-6 l_{2}-12 l_{3}-16 l_{4}-24 l_{5}-16 l_{6}\right)\right]+E^{\mathrm{c}}(C) \tag{35}
\end{align*}
$$

(35) can be explained as follows. Nearest-neighbour spins of X_{1} formerly separated by C, are now both positive, giving rise to an energy contribution of $-n_{v} J_{1}$. The second term of (35) arises because each of the spins of X_{2} which belong to one of the sets l_{1}, l_{2}, l_{3}, l_{4}, l_{5} or l_{6} is now surrounded by eight positive spins thus giving the second term of (35). Now, if there had been no intersections nor edges of any type in C, then reversing all spins inside C and fixing negative all spins of X_{2} which formerly lay on C gives a contribution to the energy of $4 n J_{2}$. But because there are corners, edges etc this result counts some bonds more than once. The effect of counting bonds more than once is accounted for by subtracting the appropriate number of bonds and this is done in the third term of (35). The last term is the contribution from all other interactions. (35) and (34) yield
$P(C) \leqslant 2^{n} \exp \left[\beta\left(-2 n_{w} J_{1}+2 J_{2}\left(2 n-2 l_{1}-2 l_{2}-4 l_{3}-4 l_{4}-8 l_{5}-4 l_{6}\right)\right]\right.$.
In the same way as before the following bound on n is constructed:

$$
\begin{align*}
n \geqslant 2 l_{1}+\frac{3}{2} l_{2} & +3 l_{3}+4 l_{4}+6 l_{5}+4 l_{6} \\
& =2 l_{1}+2 l_{2}+4 l_{3}+4 l_{4}+8 l_{5}+4 l_{3}-\left(\frac{1}{2} l_{1}+l_{3}+2 l_{5}\right) \tag{37}
\end{align*}
$$

(36) and (37) yield

$$
\begin{equation*}
P(C) \leqslant 2^{n} \exp \left\{\beta\left[-2 n_{w} J_{1}+2 J_{2}\left(n-\frac{1}{2} l_{1}-l_{3}-2 l_{5}\right)\right]\right\} . \tag{38}
\end{equation*}
$$

It is now possible to demonstrate that an ordered phase exists at low enough temperatures.

Define

$$
\begin{equation*}
m_{2}=\frac{1}{V} \sum_{X_{1}} \sigma_{x_{1}} . \tag{39}
\end{equation*}
$$

Then

$$
\begin{equation*}
\lim _{V \rightarrow \infty}\left\langle m_{2}\right\rangle \geqslant \lim _{V \rightarrow \infty}\left(1-\frac{2}{V} \sum_{C} V(C) D(C) P(C)\right) \tag{40}
\end{equation*}
$$

Sufficient bounds on $V(C)$ and $D(C)$ are

$$
\begin{align*}
& V(C) \leqslant\left(n_{\mathrm{v}} / 4\right)^{3 / 2}, \\
& D(C) \leqslant V 3^{n_{\mathrm{v}}} . \tag{4}
\end{align*}
$$

(36) and (38) in (40) yields

$$
\begin{equation*}
\lim _{V \rightarrow \infty}\left\langle m_{2}\right\rangle \geqslant 1-2 \sum_{C}\left(n_{v} / 4\right)^{3 / 2} 3^{n_{v} 2^{n}} \exp \left\{\beta\left[-2 n_{v} J_{1}+2 J_{2}\left(n-\frac{1}{2} l_{1}-l_{3}-2 l_{5}\right)\right]\right\} . \tag{42}
\end{equation*}
$$

It is not clear at this stage that the last term of (42) can be bounded less than one since the 2^{n} might be bigger than the exponential. However, this is not so. Write

$$
\begin{equation*}
n=n_{\mathrm{v}}+\left(n_{\mathrm{h}}-\frac{1}{2} l_{1}-l_{3}-2 l_{5}\right)+\left(\frac{1}{2} l_{1}+l_{3}+2 l_{5}\right) . \tag{43}
\end{equation*}
$$

Then (42) becomes

$$
\begin{align*}
& 1-2 \sum_{C}\left\{\left(n_{\mathrm{v}} / 4\right)^{3 / 2} 6^{n_{\mathrm{V}}} 2^{\frac{1 l_{1}+l_{3}+2 l_{5}}{}} \exp \left[2 \beta n_{\mathrm{v}}\left(J_{2}-J_{1}\right)\right]\right\} \\
& \times\left\{2^{n_{\mathrm{n}}-\frac{1}{2} l_{1}-l_{3}-2 l_{5}} \exp \left[2 \beta J_{2}\left(n_{\mathrm{h}}-\frac{1}{2} l_{1}-l_{3}-2 l_{5}\right)\right]\right\} . \tag{44}
\end{align*}
$$

Now

$$
\begin{equation*}
n_{\mathrm{h}}-\frac{1}{2} l_{1}-l_{3}-2 l_{5} \geqslant 0, \tag{45}
\end{equation*}
$$

and hence the expression in the second set of brackets of (44) can be bounded less than or equal to one for $T<T_{0}$. Also if l_{n} is the length of the perimeter of the horizontal surfaces, then

$$
\begin{equation*}
\frac{1}{2} l_{1}+l_{3}+2 l_{5} \leqslant l_{\mathrm{h}} \leqslant 2 n_{\mathrm{v}} . \tag{46}
\end{equation*}
$$

Thus, for $T<T_{0}$, (44) becomes greater than or equal to

$$
\begin{equation*}
1-2 \sum_{n_{v}=4}^{\infty}\left(n_{v} / 4\right)^{3 / 2} 6^{n_{v}} 2^{2 n_{v}} \exp \left[2 n_{v} \beta\left(J_{2}-J_{1}\right)\right] . \tag{47}
\end{equation*}
$$

For $J_{2}<J_{1}$ the sum in (47) can be bounded as small as is pleased. In particular it can be bounded strictly less than one for $T<T_{c}$. Hence it has been proved that

$$
\begin{equation*}
\lim _{V \rightarrow \infty}\left\langle m_{2}\right\rangle>0 \quad \text { for } T<\min \left(T_{0}, T_{\mathrm{c}}\right)>0 . \tag{48}
\end{equation*}
$$

Hence an ordered phase exists for $J_{2}<J_{1}$, the order parameter being given by (39), and hence from general thermodynamic principles a phase transition has been proved to exist. Order parameter (39) describes ferromagnetic ordering on X_{1}. From (47) it can be seen that the order parameter saturates at $T=0$. Thus all spins of X_{1} will be up and this implies that all spins of X_{2} will be frozen down, there is no $T=0$ entropy. In effect for $J_{2}<J_{1}$ the entire system is a ferrimagnet with a perfect groundstate with two-thirds of the spins positive and one-third negative.

4. Conclusion

An ordered phase has been shown to exist and the order parameter has been identified in the two cases $J_{1} \leqslant J_{2}$ and $J_{1}>J_{2}$. A schematic graph of transition temperature as a
function of J_{2} / J_{1} is shown in figure 3. The full curves represent the calculated lower bounds on the transition temperature. Now the chain curves representing the true transition temperature must meet at a three-phase point as shown in figure 3. It would be interesting to know if the three-phase point occurs at $T>0$ or not. The answer to this question seems at the moment beyond the reach of the simple argument used here. The results of a mean field calculation (M A Moore and A Bray 1977, private communication) indicate that the three-phase point does occur at a non-zero temperature. However, since mean field calculation give upper bounds this result is not conclusive.

Figure 3. Transition temperature as a function of J_{2} / J_{1} (schemantic). Full curves, calculated bound; chain curves, actual critical temperature. Regions 1,2 and 3 are antiferromagnetic, ferrimagnetic and disordered regions respectively.

It is possible to perform a partial trace over the spins of X_{2}. Doing this leaves the lattice X_{2} with two, four and eight spin ferromagnetic interactions between different layers of X_{2}. This is why the system can be regarded as having competing order parameters due to the antiferromagnetic coupling within the layers of X_{1} and the ferromagnetic coupling between the layers of X_{1}.

References

[^0]: \dagger The word 'cycles' is used here in a slightly different sense to Ruelle. In Ruelle (1969) 'cycles' are defined in such a way as to have no intersections. Here the restriction on intersections is dropped. This is why it is possible to construct a tighter bound on the number of connected components of B than the one in Ruelle (1969).

