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Ordering in a system with finite entropy at T = 0 

P Reed 
Theoretical Physics Department, University of Manchester, Manchester M13 9PL, UK 

Received 26 May 1977 

Abstract. A rigorous Peierls-type proof is given for the existence of a phase transition for an 
antiferromagnetic Ising model on a CUBAu lattice with the spins at the gold sites removed. 
This lattice is known to possess finite entropy at T = 0. Thus in contrast to say the planar 
triangular antiferromagnetic king model, which has entropy at T=O but no phase 
transition, here is an king model which has both. 

1. Introduction 

Recently Chui (1977) examined an antiferromagnetic Ising model on a Cu3Au lattice 
with non-magnetic impurities at the Au sites. He showed that at zero temperature the 
system possessed a finite entropy per spin, and suggested that an ordered phase may still 
exist despite this finite entropy at T = 0. 

Here a Peierls-type argument (Peierls 1936, Griffiths 1964) is used to show 
rigorously that an ordered phase does indeed exist. Part of the lattice which is to be 
considered is shown in figure 1. The positions of the spins are shown by crosses and full 
circles. At the centre of each alternate octet of spins denoted by a cross is another spin 
denoted by a full circle. Interactions between nearest neighbours are depicted in figure 

(a  ) ( b )  
F i e  1. Part of Cu3Au lattice shown: (a) from the side; and (6) from above. Spins are 
depicted by crosses and full circles, and bonds by full and broken lines. 
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1 by full and broken lines, and the coupling between all spins is taken to be less than 
zero. It is convenient to divide the spins of the lattice into two sets, denoted by X1 and 
X 2  and defined as follows: 

(i) The set of spins at the base of the pyramids of the lattice and depicted as crosses 

(ii) The spins at the tips of the pyramids and depicted by full circles belong to set X 2 .  
Denote by o;, = *l and ux2 = f 1 the spins of.Xl and X2 respectively. Now each spin 

in figure 1 belong to set XI. 

interacts with its nearest neighbours only and the energy E of the lattice is 

and 
J1, J2 < 0. 

( x l x  i )  denote summation over nearest neighbours. The distribution function for any 
arrangement of the spins is 

exp(-PE), p = l /kT.  

Note that spins in different layers and belonging to X1 interact only through the spins of 
X 2 .  Peierls’ (1936) original argument for the existence of a phase transition in the 
two-dimensional Ising ferromagnet is a powerful geometric argument which in essence 
bounds the probability of fluctuations from the ground state and from this it is possible 
to infer the existence of a phase transition. Here, because of the peculiar geometry of 
the lattice, these bounds cannot be expressed in terms of the length (surface area) of the 
boundary between regions of opposite order as in the original Peierls’ proof. In 
addition, the ordering can be quite subtle in that it may only be the spins of XI which 
become ordered while the spins of X 2  remain disordered. It is the disorder of X, which 
gives rise to the finite entropy at zero temperature as shown by Chui (1977) and as will 
arise as a natural consequence of the proof of a phase transition. The nature of the 
ordering will depend on  the ratio J1 /J?  and can be either antiferromagnetic or 
ferromagnetic even though J1, J 2 < 0 .  In fact this lattice can be regarded as having 
competing order parameters; but discussion of this will be delayed until after the proof 
has been given. Finally it is noted that there are two-dimensional aniiferromagnets 
which have finite entropy per spin at T = 0. The triangular lattice has finite entropy per 
spin at T =  0 but no phase transition (Wannier 1950), while the ‘union jack’ lattice with 
a spin at the site of the crossed bands does have a phase transition and can have entropy 
at T =  0 (Vaks et a1 1965). 

Somewhat anticipating the results the calculation is divided into two cases J1 b J 2  < 
0 and O > J 1  > J 2 .  

2. Calculation: Jr G J2 

For the moment consider XI only and impose the following boundary conditions on the 
sub-lattice which they make up. Let the boundary columns of this sublattice be 
alternately fixed with positive or negative spins. Let the first and last layers of this 
sublattice have their spins fixed such that each negative spin is surrounded by positive 
spins and vice versa. Thus these first and last layers have the perfect antiferromagnetic 
order. Now sublattice X1 is partitioned by drawing unit areas on the dual of sublattice 
X1 using the following rules: 



Ordering in a system with finite entropy at T = 0 1747 

(i) If two neighbouring spins in the same layer of sublattice X1 are parallel then 
draw a unit area perpendicular to the line joining them and midway between 
them. 

(ii) If two spins in neighbouring layers of X1 are antiparallel then draw a unit area 
midway between them and perpendicular to the line joining them. 

In this way sublattice X1 is partitioned by a set of closed surfaces. Denote the set of 
such surfaces by B. So far nothing has been said about sublattice X 2  and the above can 
be carried out without reference to it. 

It is well known that, say for a rectangular or cubic lattice, B uniquely identifies the 
energy of the lattice. This is not the case for the present lattice as the spins of X 2  can take 
any value without altering B. A lattice with no surfaces will have perfect antiferro- 
magnetic ordering in each layer of X1 and ferromagnetic ordering in each column. In 
the Peierls' proof only the area of B is relevant; however, here the number of corners, 
edges and interactions will be important. 

It is important to state clearly what is to be meant by the phrase 'the interaction 
across B' .  By this is meant interaction between all pairs of spins of X1, one inside B and 
one outside B, either joined directly by a bond of sublattice XI or indirectly via a single 
spin of X 2 .  The programme is now to bound the probability of configuration B and 
from this to infer the existence of a phase transition. 

Define: 

( a )  n to be the total surface area of B. 
( b )  n h  and n, to be the horizontal and vertical components of n. 
(c) n l  to be the number of sites of X 2  where there is an intersection between two 

vertical planes of l3 (figure 2 ( a ) ) .  
( d )  n2  to be the number of sites of X2 where there is a corner of B (figure 2(6) ) .  
( e )  n3 to be the number of sites of X 2  where there is a vertical edge of B (figure 

( f )  n4 to be the number of sites of X2 where there is a horizontal edge of B 
intersected by a plane (figure 2 ( d ) ) .  

Knowing the above is all that is required to fix the maximum energy of interaction across 
B. To see this, note that for a corner edge etc not at a site of X 2 ,  no additional 
interactions across B are incurred other than those included in ( b ) .  Further, there is no 
effective interaction across n h .  This is because the layers of X1 are connected only 
through spins of X 2  and the sum of any eight of X1 separated by horizontal sections of B 
is zero. Thus there is no net contribution to the energy of the lattice coming from a h ,  

except possibly from the edges of these horizontal sections and such energy con- 
tributions have already been accounted for in n2 and n4. 

Define N2 to be the set of unit surfaces of B which meet at the n 2  sites of X 2  where 
there is a corner of B. Similarly define N 1 ,  N 3  and N4 for the other types of intersections 
defined in (c), (e) and (f). Let E ( B )  be the energy of the lattice which is partitioned by 
B. Then 

2(C)) .  

or more generally, 
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Figure 2. Types of intersections at sites of X2. 

E"(B) is the contribution to the energy coming from all interactions no? across B. Hence 
if P ( B )  is the probability of configuration B then from (3) 

P ( B )  = 
1' e--BE=(B) (2 cosh SJ2p)"'(2 cosh 2Jzp)"'(2 cosh 4J2p)"'(2 cosh 4Jzp)"" 

2211, +n2+n3+n4-d 
(X2) 

(4) 

d is the number of spins of X 2  which lie on B. Z is the partition function and the 
summation is over all gxl and gX2 subject to the boundary conditions. Z{x,) denotes 
summation over all spins of X 2  which do not lie on B. A lower bound is constructed for 
Z by restricting the summation over (XI) and (X,) to states in which there are no 
surfaces at all. Denote the set of such states by G. Then 

The problem is now to bound (7). The first step is to choose TI such that for T < TI 

eaJ2<g < I .  (8)  
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for the moment it does 77 is arbitrary but small. Typically 7 could be chosen to be 
not matter; a suitable choice will be made later. Then 

1 + 77 "1'"2'"3+"4 

~ ( ~ ) ~ e x p 1 ~ [ 2 n ~ ~ - 2 ~ 2 ( 4 n l + n 2 + 2 n 3 + 2 n 4 ) 1 } ( ~ )  . (9) 

A bound is put on (9) by expressing n,  in terms of n l ,  n2, n3 and n4. The type of bound 
that will be constructed and that will be sufficient for later use will depend on whether 
J1 < J2 or J1 = Jz. Note that each unit area of B can at most belong to two of the sets NI, 
N2, N3 and N4 (or the same set twice). This is because of the strange geometry of the 
lattice. To convince oneself of the truth of the above statement just imagine a unit area 
which forms part of a corner, then this unit area can at most form part of two corners 
which are at a site of X2. Thus a lower bound for n, is half the total number of vertical 
unit areas needed to construct n1 intersections, n2 corners etc. Thus 

n , a $ ( 8 n l  +2n2+4n3+6n4),  (10) 

and from (9) and (10) it follows that 

This bound is sufficient for J1 f Jz. For .TI= J2 write 

4nl  + n 2 +  2n3+2n4 = n,- b, b 20.  (12) 
It follows that 

n + n2 + n + 124 2 i n ,  - bb. (13) 
Thus from (9), 

It is now possible to show that for sufficiently low temperatures an ordered state can 
exist. To do this the correct order parameter must be chosen and bounded strictly 
greater than zero. Now 

X I  = (i, i, k )  i , j , k = l , 2  , . . .  
and define 

with V the number of spins of XI. Then 

V ( B )  is the number of spins inside B and D ( B )  can be defined as follows: split B into a 
maximal set of connected components B1, Bz ,  . . . , B, which shall be called cycles?. 

t The word 'cycles' is used here in a slightly different sense to Ruelle. In Ruelle (1969) 'cycles' are defined in 
such a way as to have no intersections. Here the restriction on intersections is dropped. This is why it is 
possible to construct a tighter bound on the number of connected components of B than the one in Ruelle 
(1969). 
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Then D ( B )  is the number of cycles with the prescribed number of crossings and corners 
etc as defined earlier. A bound on D ( B )  can be constructed in much the same way as 
Griffiths (1964) and Ruelle (1969) with a few modifications. If there were no know- 
ledge about the number of corners, crossings etc then a bound could be constructed as in 
Ruelle (1969) to give 

v 3 " " - '  

The 3"*-' comes from the requirement that each unit area can be added in one of three 
ways. However, knowing that there are n1 crossings etc reduces the degree of freedom 
of those unit areas involved in constructing these intersections etc to one. Hence from 
(10) the following is found: 

(17) D ( B )  ~ 3 n , - ( 4 n l + n ~ + 2 n , + 3 n , )  

For J1 < J 2  

A sufficient bound for V ( B )  for the present is 

V ( B )  s (n,/4)3/2. 

Then the second term of (18) is less than or equal to 

In particular the above series is convergent and can be bounded as small as is pleased. 
Then choose a I ( T )  < 1 for T < Tcl. Then 

V-00 lim (ml) > 1 -a l (T )  > 0 for T < Tcl. (20) 

Hence there is an ordered phase for T < T,, andJ1 <Jz. There is also a phase transition 
for J1 =Jz but the proof is a little more involved. Using (14), (16) and (17), then for 
J 1 =  Jz 

The summation in (21) is divided into two parts: a summation for which b f 0 and a 
summation for which b = 0. The second term of (21) becomes 

b #O 

b = O  

The first of these terms can be easily disposed of. Use (13) and (12) to write the first 
term of (22) as less than or equal to 

b #O 
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(19) is again a sufficient bound for V ( B ) .  Hence (23 )  becomes less than or equal to 

where T is chosen sufficiently small to make 3[(  1 + 77)/2]-"" eZpJ1 < 1. Now the series 
in (24 )  is convergent by the ratio test remembering that 77 < 1. Hence by choosing T 
small, (24 )  can be bounded as small as is pleased. Define (24 )  to be 

The second term of (22 )  is slightly harder to bound as there are no exponentially small 
factors to control the growth of the series. In fact, it is obviously not possible to bound 
this series to zero as T + 0 as in the previous two series. It is necessary to carefully take 
into account the consequences of b = 0 which are as follows: 

b=O 3 n 4 = 0 ,  ( 2 6 a )  

b = O  j n v = 4 n l + n 2 + 2 n 3 ,  ( 2 6 6 )  

b=O j V ( B ) = n v / 4 .  ( 2 6 c )  

Using (26) in the second term of (22 )  yields 

Before summing (27)it must be noted that nl  # 0 3  n2 a 4  and n3 2 2, and n3 Z 0 3  ni 3 
4 .  So (27)  is bounded above by 

77 can be chosen as small as is pleased by choosing TI small enough, as can be seen from 
equation (8). Let 

77 = 1 0 - ~  T < T , .  

Hence ( 2 8 )  sums to 

+ + o( 1 o-~) .  

From (21 ) ,  (22 ) ,  (25 )  and (29 )  it follows that for J1 = J2 

v - m  lim ( m l ) s  1 -LY~(T)  -+- 0(10-~) * f -cuz (~ )  - 0(10-~). (30) 

For T <  T,,, a2(T)<$.  (30) also holds when J1 < J 2 .  However, the bound already 
constructed for this case and given by (20) shows that the system saturates at T = 0. 
From (30 )  it follows that for T < min(T1, Tc2) 

lim (m 1)  > 0. 
V-CO 

Equations (20 )  and (30) yield the required result that for all J1 s J 2  

lim(m1)>0 for T<min(T1, T,,, T,,)>O. 
V-CO 
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An ordered state has been proved to exist and hence from general thermodynamic 
considerations the system has been shown to undergo a phase transition. The order 
parameter has been identified and is given by (15). This order parameter describes the 
ordering of the spins of sublattice X1. The ordered phase has antiferromagnetic 
ordering in the planes of XI and ferromagnetic ordering in the columns. For J1 < J2 and 
T = 0 the order parameter saturates, as can be seen from (20 ) .  In this state the spins of 
X 2  are essentially free giving an entropy per spin at T = 0 of 

For J1 = J 2  the system will have this characteristic ordering given by order parameter of 
equation (15). However, the entropy per spin can be shown to be strictly greater than 
( 3 2 ) .  Hence for J ,  = J 2  the order parameter does not saturate at T = 0. For J1 <Jz and 
at T = 0, and only then, the correlation between the neighbouring layers of X1 breaks 
down. 

3. Calculation: J2 C J1 < 0 

None of the bounds constructed in 8 2 hold for J2 <Jl < 0. It will now be shown that for 
sufficiently small temperatures a different type of ordering occurs. In this case all 
boundary spins of X1 are made positive and the lattice is partitioned by drawing unit 
areas on the dual of X1 between any neighbouring spins of XI which are antiparallel. 
This partitions the lattice by closed surfaces; call the set of such surfaces C. These 
surfaces intersect themselves and again the energy of a given configuration C will 
depend on the number and type of intersections, though not in the same way as before. 
Define: 

( a )  n to be the total area of C. 
( b )  n, and n h  to be the vertical and horizontal component of n. 
(c) lI  to be the number of sites of X2 where there is an edge of C (figure 2 ( c ) ) .  
( d )  l 2  to be the number of sites of X 2  where there is a corner of C (figure 2 ( b ) ) .  
( e )  l3  to be the number of sites of X 2  where there are two corners of C (figure 2 ( e ) ) .  
(f) l4 to be the number of sites of X2 where there is an intersection of two planes of 

C (figure 2(a)). 
(g) l5 to be the number of sites of X 2  where three planes of C intersect (figure 

2 ( f  )I. 
( h )  l6 to be the number of sites of X 2  where there is an intersection of an edge and a 

plane of C (figure 2 ( d ) ) .  

Denote by L1 the set of unit areas which meet at the ll sites of X z  where there is an edge 
of C; Define Lz, L3,  L4, L5 and L6 similarly. Note that even though the same diagrams 
have been used to illustrate ( c ) ,  ( d ) ,  (f)  and ( h )  of the above there are slight differences 
in some of these definitions from those that were used before. For example in (f)  it is no 
longer required that the planes should be vertical. Denote by E(C) the energy of the 
lattice which is partitioned by C: 
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E"(C) comes from all interactions not across C. Then the probability of C is thus 

2 is the partition function which is the sum over all U,,, rX2 subject to the boundary 
conditions. This summation is restricted to states such that there are no surfaces 
present. This is equivalent to just taking configuration C and reversing all spins inside 
it. Also restrict all spins of X z  which formerly lay on the surface C to be fixed negative. 
Denote this state by G and the energy of any state of G by E*(C). Then 

and 

E*(C)  = - [ n J 1 - 8 J z ( l l + l ~ + l ~ + ~ ~ + ~ 5 + 1 6 )  

-Jz(4n -811-61z- 1213- 1614-2415- 16/6)]+Ec(C). (35 )  

(35) can be explained as follows. Nearest-neighbour spins of XI formerly separated by 
C, are now both positive, giving rise to an energy contribution of -n,J1. The second 
term of (35) arises because each of the spins of X z  which belong to one of the sets 11,12, 
13, 14, Is or l6 is now surrounded by eight positive spins thus giving the second term of 
(35). Now, if there had been no intersections nor edges of any type in C, then reversing 
all spins inside C and fixing negative all spins of X z  which formerly lay on C gives a 
contribution to the energy of 4nJz. But because there are corners, edges etc this result 
counts some bonds more than once. The effect of counting bonds more than once is 
accounted for by subtracting the appropriate number of bonds and this is done in the 
third term of (35). The last term is the contribution from all other interactions. (35) and 
(34) yield 

Pic) s 2" e x p p  (--2nJ1 + 2Jz(2n - 211 - 2l2 - 4Z3 - 414 - 815 - 4~41 .  (36) 

In the same way as before the following bound on n is constructed: 

n 2211 +~lz+313+4/4+6i5+416 

= 211 + 212 + 413 + 414 + 8 1 5  + 413 - (ill + 13 + 215). (37) 
(36) and (37) yield 

(38) 
1 P(C)  s 2" exp@[-2nJ1 + 2Jz(n -21, - I 3  - 215)]}. 

It is now possible to demonstrate that an ordered phase exists at low enough tem- 
peratures. 

Define 

1 
v x, mz=-C U x , .  (39) 

Then 
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Sufficient bounds on V(C) and D ( C )  are 

V ( C )  s (nv/4)3'z, 

D(C)  6 v3nv. 

(36) and (38) in (40) yields 

It is not clear at this stage that the last term of (42) can be bounded less than one since 
the 2" might be bigger than the exponential. However, this is not so. Write 

n = n v +  ( n h - i l l  - /3-2/5) + (ill + 13 + 215). (43) 

Then (42) becomes 

nh -ill - l 3  - 215 3 0, (45) 

and hence the expression in the second set of brackets of (44) can be bounded less than 
or equal to one for T < TO. Also if i h  is the length of the perimeter of the horizontal 
surfaces, then 

+ 13 + 215 lh < 2nv. (46) 

Thus, for T < To, (44) becomes greater than or equal to 
m 

1 - 2 1 (nv/4)3/26"v22nv exp[2nvP(J2 -J1)]. 
nv=4 

(47) 

For J 2  <Jl the sum in (47) can be bounded as small as is pleased. In particular it can be 
bounded strictly less than one for T < T,. Hence it has been proved that 

v-m lim (m2) > 0 for T < min( To, TJ > 0. (48) 

Hence an ordered phase exists for J2 <.TI, the order parameter being given by (39), and 
hence from general thermodynamic principles a phase transition has been proved to 
exist. Order parameter (39) describes ferromagnetic ordering on XI. From (47) it can 
be seen that the order parameter saturates at T = 0. Thus all spins of XI will be up and 
this implies that all spins of XZ will be frozen down, there is no T = 0 entropy. In effect 
for J2 <.TI the entire system is a ferrimagnet with a perfect groundstate with two-thirds 
of the spins positive and one-third negative. 

4. Conclusion 

An ordered phase has been shown to exist and the order parameter has been identified 
in the two cases J1 G J 2  and J1 > J z .  A schematic graph of transition temperature as a 
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function of J2/J1 is shown in figure 3. The full curves represent the calculated lower 
bounds on the transition temperature. Now the chain curves representing the true 
transition temperature must meet at a three-phase point as shown in figure 3. It would 
be interesting to know if the three-phase point occurs at T 7 0 or not. The answer to 
this question seems at the moment beyond the reach of the simple argument used here. 
The results of a mean field calculation (M A Moore and A Bray 1977, private 
communication) indicate that the three-phase point does occur at a non-zero tem- 
perature. However, since mean field calculation give upper bounds this result is not 
conclusive. 

I I 
I 

/ 

/ 

Figure 3. Transition temperature as a function of J2/J1 (schemantic). Full curves, cal- 
culated bound; chain curves, actual critical temperature. Regions l ,  2 and 3 are antifer- 
romagnetic, ferrimagnetic and disordered regions respectively. 

It is possible to perform a partial trace over the spins of Xz. Doing this leaves the 
lattice Xz with two, four and eight spin ferromagnetic interactions between different 
layers of X,. This is why the system can be regarded as having competing order 
parameters due to the antiferromagnetic coupling within the layers of XI and the 
ferromagnetic coupling between the layers of X1. 
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